

Аппарат для определения температуры вспышки в открытом тигле с двумя видами воспламенения

ТВО-2-ПХП

ΓΟCT 4333-2021, ΓΟCT 33141-2014, ΓΟCT ASTM D92, ISO 2592

Руководство по эксплуатации, методика аттестации **ПАСПОРТ**

Содержание

I.	Стандарты	4
II.	Назначение и условия эксплуатации	4
III.	Внешний вид и устройство	4
IV.	Основные технические характеристики	7
V.	РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ	11
	Порядок использования. Подготовка испытания Проведение испытания	11
VI.	Принципиальная электрическая схема	15
VII.	. Указание мер безопасности	16
VIII	І. Правила хранения и транспортировки	17
IX.	Гарантийные обязательства	12
Χ.	Комплектация и техническая документация	19
XI.	Свидетельство о приёмке	19
XII.	. Основные неполадки и методы их устранения	20
XII	І.Программа и методика аттестации на аппарат ТВО-2-ПХП	21
	ПЕРЕЧЕНЬ ПРОИЗВОДИМОЙ ПРОДУКЦИИ	28

I. Стандарты

Аппарат ТВО-2-ПХП (далее по тексту — аппарат) разработан в соответствии с требованиями государственного стандарта тестирования нефти и нефтепродуктов и для обеспечения методики измерений согласно ГОСТ 4333-2021, ГОСТ 33141-2014 описывающим методику определения температуры вспышки нефтепродуктов в открытом тигле.

Аппарат соответствует также методике тестирования ASTM D92 «Стандартный метод определения вспышки и температуры воспламенения нефтепродуктов в открытом тигле Кливленда», а также стандарту ISO 2592.

II. Назначение и условия эксплуатации

Аппарат ТВО-2-ПХП аналогичен исходному аппарату ТВО-ПХП и предназначен для определения температуры вспышки нефтепродуктов, нагреваемых с установленной скоростью в открытом тигле, в момент вспышки паров нефтепродуктов над его поверхностью от зажигательного устройства.

В отличии от исходного аппарата здесь добавлена возможность использования электрического воспламенения при отсутствии подвода газа.

Условия эксплуатации аппаратов:

- 1. Испытательный аппарат должен быть помещен на горизонтальный рабочий стол, в помещение без присутствия в атмосфере летучих и едких газов (например бензина).
- 2. Температура окружающей среды: 10 °C ...+50 °C
- 3. Относительная влажность: ≤ 95% при 20 °C
- 4. Атмосферное давление: 84-106,7 кПа (630-800 мм.рт.ст.)
- 5. Источник электропитания: переменный ток 220 В $\pm 5\%$, 50 Гц
- 6. Испытательный аппарат должен иметь хорошее заземление.

III. Внешний вид и устройство

Внешний вид аппарата показан на рисунках 1 и 2, устройство аппарата показано ниже на рисунках 3 и 4.

Рис. 1. Внешний вид аппарата ТВО-2-ПХП

Рис. 2. Внешний вид аппарата ТВО-2-ПХП с установленным электрическим воспламенителем. Вид сверху

Изготовитель оставляет за собой право вносить в конструкцию аппарата изменения без коррекции эксплуатационно - технической документации, если они не влияют на его технические параметры.

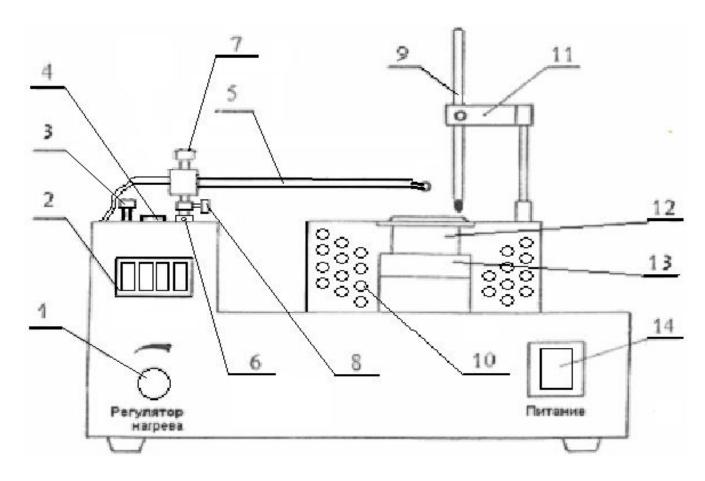


Рис. 3. Устройство аппарата ТВО-2-ПХП

- 1. Регулятор напряжения (мощности (скорости) нагрева);
- 2. Вольтметр цифровой контроля мощности (скорости) нагрева;
- 3. Регулировочный вентиль мощности подачи газа (с редуктором);
- 4. Кнопка выключения нагрева тигля и запуска воспламенителя;
- 5. Воспламенитель сменный (либо газовый, либо электрический);
- 6. Регулятор сектора движения воспламенителя;
- 7. Регулятор длины (вылета стрелы) воспламенителя;
- 8. Регулятор высоты воспламенителя;
- 9. Термометр контрольный;
- 10. Перфорация обшивки нагревателя;
- 11. Крепеж термометра;
- 12. Тигель Кливленда;
- 13. Электронагреватель с воздушной баней;
- 14. Штуцер подключения газового воспламенителя;
- 15. Штуцер подвода газа;
- 16. Клеммники подключения электрического воспламенителя
- 17. Подключение электрического питания

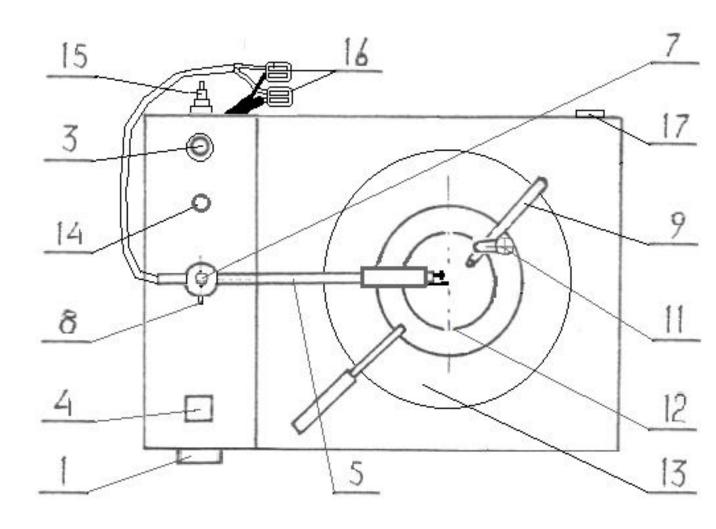


Рис. 4. Устройство аппарата ТВО-2-ПХП. Вид сверху

IV. Основные технические характеристики

Автоматическое управление направлением пламени и электрическим воспламенением;

Данный аппарат состоит из собственно аппарата, тигля Кливленда, комплекта газового воспламенителя, электрического воспламенителя из двух электродов (толстого изогнутого и тонкого прямого) с кабелем электропитания (воспламенитель установлен изначально), нагревательной бани с электронагревателем с регулятором мощности нагрева и цифровым вольтметром контроля мощности, а также контрольного термометра в комплекте.

Основные технические характеристики аппарата приводятся ниже:

Воспламенитель газовый (требует сборки при необходимости):

- 1. Источник пламени: бытовой или сжиженный газ
- 2. Размер выходного отверстия горелки: 0,6-0,8 мм

- 3. Давление газа от 40 до 50 кПа (от 0,4 до 0,5 кгс/кв.см);
- 4. Расход газа не более 8,5 x 10-6 куб.м/с.
- 5. Состоит из трубки, регулировочного вентиля, шарика выравнивания пламени.

Пламя опытным путем настраивается в виде шарика диаметром 3-4 мм.

Воспламенитель электрический (предустановлен в аппарат на заводе):

- 1. Электропитание: переменный ток 220 B \pm 5%, 50 Гц.
- 2. Состоит из двух электродов, один толстый и изогнутый, а другой тонкий прямой, между которыми проскакивает искра, а также кабеля электропитания. Электрическая дуговая искра, постоянно возникающая между электродами, воспламеняет пробу топлива в тигле.
- 3. Внешний вид электрического воспламенителя и аппарата с установленным электрическим воспламенителем можете увидеть на рисунках 5 и 6:

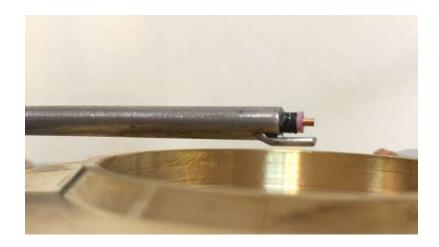


Рис. 5. Внешний вид электрического воспламенителя

Рис. 6. Аппарат ТВО-2-ПХП с установленным электрическим воспламенителем

Источник электропитания:

Переменного тока 220 В $\pm 5\%$, 50 Гц

Сопротивление: ≥2 МΩ

Термометр:

Ртутный термометр с внутренней маркировкой или стержневой, должен соответствовать требованиям ГОСТ 4333-2021, ГОСТ 33141-2014.

1. 0 °С - 360 °С, градуировка ±1 °С

Тигель стандартный Кливленда:

- 1. Тигель Кливленда изготовлен из материала Н62
- 2. Внутренний диаметр тигля $63,5\pm0,5$,
- 3. На внутренней поверхности тигля нанесена риска,

Электронагреватель:

- 1. Корпус нагревателя изготовлен из SiC, мощность 500 Вт.
- 2. Трубчатого типа, из алюминиевого сплава, обеспечивает быстрый и равномерный нагрев. Обладает простой конструкцией и отличается продолжительным сроком службы, исключает возможность внезапного воспламенения, а также обеспечивает быстрое нагревание.
- 3. Мощность (скорость нагрева) регулируется при помощи регулятора на передней панели прибора, увеличиваясь по часовой стрелке 5-260 В
- 4. Максимальная температура нагрева: от окружающей среды до 400°С.
- 5. Скорость нагрева: 5~6 °С/мин.

Особенности

- 1. Высокая скорость нагрева и простота ее регулировки;
- 2. Точность воспламенения, удобство в работе;
- 3. Возможность применения электрического воспламенителя при отсутствии подвода газа в лаборатории;
- 4. Высокая повторяемость результатов измерений;

5. Стабильность воспламенения в любых условиях и большой срок

службы;

6. Высокая ремонтопригодность;

ВНИМАНИЕ!

7. Для условий измерения вспышки нефтепродуктов при температуре

ниже окружающей среды * возможна дополнительная поставка

термометр контрольный спиртовой ТН-8M (-80...+60) / 1,0°C

*- При работе в области температур, ниже температуры окружающей

среды, требуется охлаждение тигля с образцом, например,

морозильной камере, не менее, чем на 17°C ниже предполагаемой

вспышки.

Далее охладив пробу нефтепродукта таким образом и, установив

тигель с пробой в аппарат, в стандартном порядке проводят

испытание на вспышку.

В этом случае следует учитывать влияние температуры среды на

параметры процесса.

Срок службы аппарата: не менее 6 лет

Вес нетто: не более 10 кг

Габаритные размеры: 350 x 300 x 260 мм3

10

V. <u>РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ</u>

Порядок использования:

Данный аппарат используется в полном соответствии с методикой тестирования нефти и нефтепродуктов по ГОСТ 4333-2021, ГОСТ33141-2014.

1. Подготовка к испытанию

- 1) Распакуйте аппарат, проверьте комплектацию и внешний вид аппарата в соответствии с инструкцией. При отсутствии повреждений и полной комплектации произведите сборку в соответствии с рисунком № 1.
- 2) Проверьте источник электропитания и наличие заземления.

ВНИМАНИЕ!

! Корпус аппарата должен быть заземлен через кабель питания. При необходимости установите розетку с заземлением!

- 3) В соответствии с требованиями стандартов ГОСТ 4333-2021, ГОСТ33141-2014 аппарат устанавливают на ровном устойчивом столе в таком месте, где нет заметного движения воздуха и свет настолько затемнен, что вспышка хорошо видна. Для защиты от движения воздуха аппарат с трех сторон окружают экраном.
- 4) Тигель аппарата промывают растворителем, высушивают, удаляя все следы растворителя, и охлаждают до температуры не менее чем на 17°C ниже предполагаемой температуры вспышки.
- 5) Временно включите электропитание, вращайте регулятор мощности по часовой стрелке увеличивая мощность нагрева. Аккуратно проверьте работу всех кнопок, клавиш и регуляторов аппарата. Затем выключите питание.
- 6) При испытании продуктов с температурой вспышки до +50°C нагревательный отсек охлаждают до температуры окружающей среды. Тигель должен иметь температуру образца.
- 7) При использовании электрического воспламенителя подготавливают и проверяют работу самого воспламенителя:
 - Ослабляют винты крепления электрического воспламенителя;
 - Вытаскивают воспламенитель из крепления;
 - При выключенном питании аппарата проверяют электроды воспламенителя на предмет повреждений и изгибов;
 - Устанавливают воспламенитель назад в крепление аппарата в рабочее положение см. рисунки 3 и 4.

Далее при включенном электропитании проверяют нагрев и устойчивость электрической дуги воспламенителя, движение воспламенителя при нажатии красной кнопки включения поджига (4), одновременное выключение нагрева тигля и его общее соответствие требованиям испытания.

- 8) При использовании газового воспламенителя зажигают газовый фитиль, регулируя пламя так, чтобы форма его была близкой к шару диаметром 3-4 мм.
- 9) Подключают питание аппарата (при этом загорится светодиод-индикатор клавиши ПИТАНИЕ). Можно начинать работу с испытательным аппаратом.
- 10) Наливают нефтепродукт в тигель Кливленда до риски, не допуская смачивания стенок тигля выше указанной метки и ставят тигель на нагреватель.
- 11) С помощью отвертки отрегулируйте высоту и длину (вылет) воспламенителя и положение термометра согласно ГОСТ 4333-2021, ГОСТ 33141-2014. Плотно закрепите регулировочные винты при таком положении воспламенителя, чтобы головка поджига свободно и в тоже время максимально низко проходила по центру тигля с пробой нефтепродукта. Закрепите контрольный термометр таким образом, чтобы замер температуры пробы проводился по центру объема пробы в тигле.
- 12) Также необходимо отрегулировать размер шарика пламени в газовом воспламенителе и сектор прохода воспламенителя над пробой продукта, чтобы тигель с пробой находился строго в середине сектора, подготовиться к работе.

2. Проведение испытания

Общие положения:

- 1) Включить питание аппарата нажатием на клавишу ПИТАНИЕ ВКЛ/ВЫКЛ, при этом загорится индикатор включения питания.
- 2) Далее контролируйте процесс нагрева. В соответствии с требованиями 4333-2021, ГОСТ33141-2014 установите ГОСТ скорость температуры пробы нефтепродукта с помощью регулятора мощности нагрева. При испытании пробы нефтепродукта с температурой вспышки до + 28 °C, зажечь воспламенитель и при необходимости, нажать красную кнопку запуска воспламенителя (4). Если вспышка не появится, повысить температуру на 2 °C и снова нажать кнопку запуска воспламенителя. При появлении языков пламени в любом месте поверхности нефтепродукта зафиксировать контрольного термометра, ОНО будет показание соответствовать температуре вспышки.

3) При использовании электрического воспламенения

- 1. В момент испытания на вспышку нажмите красную кнопку (4) на верхней панели аппарата, тем самым выключив нагрев продукта в тигле и включив процесс воспламенения (повторяющаяся искровая дуга).
- 2. Повторное нажатие кнопки запуска воспламенителя (4) запустит автоматически срабатывающий цикл прохода воспламенителя непосредственно над открытым тиглем. Наблюдайте за вспышкой пламени и фиксируйте температуру воспламенения пробы.
- **3.** Цикл воспламенения и прохода электрического воспламенителя над тиглем производиться в течении ориентировочно 5-10 секунд, далее воспламенитель автоматически выключается. Если в процессе какоголибо испытания на вспышку дуговая искра электрического воспламенителя погаснет в момент прохода над тиглем (перебои электроснабжения), то результат этого определения не учитывают.
- 4. Если вспышка пробы нефтепродукта не произошла, испытания продолжаются, и после достижения следующей температуры кнопка запуска воспламенителя нажимается повторно и воспламенитель возвращается в исходное положение. Наблюдайте за вспышкой пламени.

Примечание:

Обращаем внимание, что электрический воспламенитель присоединен к аппарату через разъемы выведенных на заднюю панель клеммников! Соединение не является разъемным.

4) При использовании газового воспламенения

1. В укомплектованном аппарате изначально установлен электрический воспламенитель.

При необходимости использования газового воспламенителя:

- 1) Ослабьте винтовое крепление подвижного механизма и отсоедините электрический воспламенитель от него, аккуратно положив электрический воспламенитель рядом с аппаратом с надетой защитной силиконовой трубкой.
- 2) Установить в крепление механизма газовый воспламенитель и закрепить его винтом. Соединить трубкой подачи газа штуцер подачи газа (14) на верхней панели аппарата и головку газового воспламенителя.
- 3) При достижении температуры нефтепродукта на 17°C ниже предполагаемой вспышки, включите подачу газа и зажгите фитиль. Настройте шарик пламени соответственно ГОСТ 4333-2021, ГОСТ33141-2014.

- 4) В момент испытания на вспышку кнопкой запуска воспламенителя (4) приведите в действие механизм прохода газового воспламенителя непосредственно над открытым тиглем и остановки в конечной точке сектора прохода воспламенителя за тиглем. Если вспышка пробы нефтепродукта не произошла, испытания продолжаются, и после достижения следующей температуры кнопка запуска воспламенителя нажимается повторно и воспламенитель возвращается в исходное положение. Наблюдайте за вспышкой пламени.
- 5) Газовый фитиль в процессе испытания должен находиться в зажженном состоянии. Если в процессе какого-либо испытания на вспышку зажигательный фитилек погаснет в момент прохода над тиглем, то результат этого определения не учитывают.
- 6) При отсутствии вспышки продолжать измерения согласно методике, приведённой в ГОСТ 4333-2021, ГОСТ33141-2014.
- 7) По окончании работы произвести очистку аппарата ТВО-2-ПХП и отключить питание.

3. Примечания и предупреждения

- 1. Для контроля правильности результатов определения температуры вспышки в открытом тигле, а также проверки аппарата используют стандартные образцы температуры вспышки в открытом тигле серии ТОТ (ТОТ-1...ТОТ-7) или других образцов аналогичного назначения, выбирая из них образцы с близкой температурой воспламенения. Порядок применения ГСО изложен в свидетельстве на ГСО.
- 2. Оборудование должно быть установлено в чистом и сухом месте, должна быть обеспечена электрическая изоляция, отсутствие кислот и щелочей.
- 3. При установке мощности нагревателя, для обеспечения длительного срока службы аппарата, следите за тем, чтобы сила тока не превышала 2,4 А.
- 4. Калибровку самого электрического воспламенителя смотрите в разделе XII данного паспорта.
- 5. При испытании токсичного продукта или продукта, который выделяет токсичные вещества при разложении и горении, испытание проводят при соблюдении правил по технике безопасности, принятых для работ с токсичными веществами. В этом случае аппарат устанавливают в вытяжном шкафу или применяют противогаз.
- 6. Для обеспечения безопасности использования, источник электропитания должен быть заземлен.
- 7. Обращаем внимание, что электрический воспламенитель постоянно присоединен к аппарату!

8. При работе с газовым воспламенителем или после окончания работы оголенный электрод электрического воспламенителя ОБЯЗАН быть закрыт защитной силиконовой трубкой.

ВНИМАНИЕ!

! Корпус аппарата должен быть заземлен через кабель питания. При необходимости установите розетку с заземлением!

! Не касайтесь головки электрического воспламенителя с 2 электродами в процессе работы аппарата и не разбирайте его при включенном питании аппарата!

- 9. По окончании работы с аппаратом проверьте выключение клавиши ПИТАНИЕ ВКЛ/ВЫКЛ.
- 10. Максимальная сила тока на нагревателе 2,7 А.
- 11. Аппарат предназначен для определения температуры вспышки нефтепродукта в открытом тигле при температуре до +360 °C согласно ГОСТ 4333-2021, ГОСТ33141-2014.

VI. Принципиальная электрическая схема

Принципиальная электрическая схема аппарата ТВО-2-ПХП состоит из цепи регулятора напряжения и полуавтоматической системы воспламенения, см. рисунке 8:

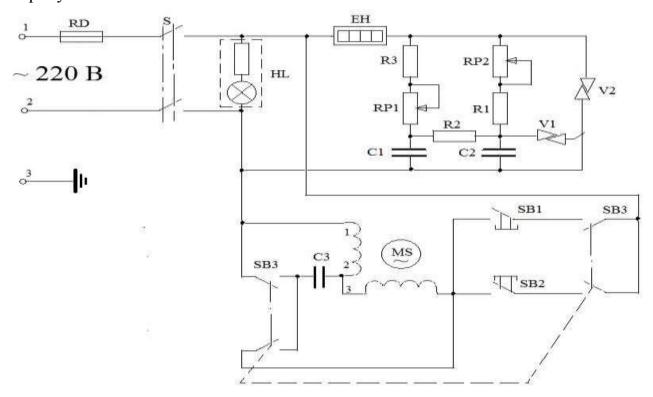


Рис. 8. Принципиальная электрическая схема аппарата

VII. Указание мер безопасности

К работе с аппаратом должны допускаться лица, имеющие необходимую квалификацию, обученные правилам техники безопасности и изучившие данную инструкцию по эксплуатации аппарата и соответствующий ГОСТ по методике испытания.

Рабочее место оператора (лаборанта) аппарата для определения температуры вспышки должно удовлетворять требованиям электробезопасности по ГОСТ 12.1.019 и санитарно-гигиеническим требованиям по ГОСТ 12.1.005.

При установке и эксплуатации аппарата следует руководствоваться положениями «Правил техники безопасности при эксплуатации электроустановок потребителей» и «Правил эксплуатации электроустановок потребителей». Аппарат соответствует общим требованиям безопасности ГОСТ 12.2.003.-91.

По способу защиты человека от поражения электрическим током аппарат соответствует классу 1 ГОСТ 12.2.007.0. Перед испытанием аппарат должен быть надежно заземлен. Аппарат имеет степень защиты не менее IP21. В части пожаровзрывобезопасности аппарат изготовлен в соответствии с требованиями ГОСТ 12.1.044-2018.

При эксплуатации аппарата не допускается производить техническое обслуживание аппарата включенного в электросеть.

! Ни в коем случае не касайтесь открытых контактов электрического воспламенителя в процессе работы аппарата, не разбирайте его при питающем кабеле, включённом в электросеть.

Рекомендации по подводу газа:

При подводе газа в небольших лабораториях чаще всего используют 1, 2 или 5 литровые газовые баллоны сжиженного бытового природного газа, представленные в ассортименте автомагазинов или в отделах хозтоваров и товаров для туризма. Рекомендуемый объем баллона зависит от количества и частоты анализов.

Подключение газа к аппаратам для определения температуры вспышки в закрытом и открытом тиглях типа ТВЗ-2-ПХП, ТВО-2-ПХП осуществляется через пропановый редуктор для сжиженного бытового газа. Предпочтение отдается редукторам с резьбовым соединением с баллоном, так как они более безопасны.

Основные характеристики редуктора — давление на выходе и пропускная способность — должны подбираться под параметры, указанные в паспорте конкретного аппарата. Если установить паспортное значение давления не представляется возможным, следует приобрести редуктор регулируемого типа и проводить его настройку вручную.

Также регулируемые редукторы прямо показаны при использовании баллонов ёмкостью от 20 литров и более, где падение давления выражено более значительно.

На штуцер редуктора одевается специальный резиновый шланг и фиксируется винтовым хомутом. Диаметр шланга подбирается под малый или большой диаметр входного штуцера на задней панели аппарата, также с обжатием хомутом — смотрите рисунок 5. Подключение к малым 1 и 2 литровым газовым баллонам возможно через силиконовую трубку, идущую в комплекте каждого аппарата с обязательным обжатием пластиковым хомутом.

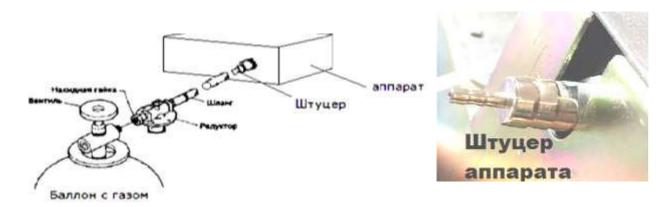


Рис. 5. Схема подключения газа к аппарату

VIII. Правила хранения и транспортировки

Аппарат в течение гарантийного срока хранения должен храниться в упаковке при температуре от $(+5 \text{ до } +35)^{\circ}$ С и относительной влажности до 85% при температуре 25° С. Хранение прибора без упаковки следует производить при температуре окружающего воздуха от $(+15 \text{ до } +35)^{\circ}$ С и относительной влажности до 75%.

Аппарат может транспортироваться всеми видами транспорта в крытых транспортных средствах в диапазоне температур (-50 до +50)°С и относительной влажности не более 95%.

ІХ. Гарантийные обязательства.

Владелец товарного знака «ПромХимПрибор» и изготовитель - ИП Щербаков Ю.А. гарантирует работоспособность аппарата при соблюдении условий транспортировки, хранения и эксплуатации.

Гарантийный срок составляет <u>12 (двенадцать) месяцев</u> со дня продажи аппарата. В течение этого времени изготовитель обязуется безвозмездно проводить ремонт или замену аппаратов с заводским браком.

Гарантийный срок не распространяется на расходные запасные части, такие как: лабораторное стекло, термометры или сменные элементы нагрева и питания.

При неисправности аппарата в период гарантийного срока потребителю следует составить рекламацию с указанием неисправностей, номера аппарата, даты выпуска и контактных телефонов пользователя.

В случае несанкционированного вскрытия аппарата в период гарантийного срока, Вы лишаетесь права на гарантийный ремонт.

На гарантийное обслуживание аппарат надлежит отправлять *в* стандартной упаковке в комплекте с паспортом и оригиналом рекламации. **По согласованию с изготовителем,** в ремонт может быть отправлена только неисправная часть аппарата.

Продан:	М.П.
ттродин.	171.11.

Х. Комплектация и техническая документация

1. Техническая документация

- (1). Паспорт с руководством по эксплуатации 1 экз.
- (2) Программа и методика аттестации 1 экз.

2. Комплектация

№	Наименование	Кол-во	Примечание
1	Аппарат ТВО-2-ПХП (с нагревателем и держателем термометра в комплекте)	1	
2	Узел электрического воспламенения с питающим электрокабелем и защитным силиконовым кожухом на оголенном контакте	1	Соединение с аппаратом неразъемное!
3	Узел газового воспламенения в комплекте с трубкой ПВХ для подачи газа	1	Трубка ПВХ ~ 0,3 м
4	Тигель Кливленда	1	
5	Термометр 0 - +360 /1,0 °C	1	TH-2M
6	Держатель термометра	1	

ХІ. Свидетельство о приёмке

Аппарат ТВО-2-ПХП для определения температуры вспышки в открытом			
тигле с двумя сменными воспламенителями: газовым и электрическим			
заводской № соответствует требованиям ТУ 36 1490-001-			
11353084-2008, ГОСТ 4333-2021, ГОСТ33141-2014, а также заводским			
критериям качества.			
Признан годным к эксплуатации по методике испытаний, ГОСТ 4333-			
2021, ΓOCT33141-2014.			
Дата изготовления			
Проверяющий Упаковано			

Штамп технического контроля

XII. Основные неисправности и методы их устранения

No	Неисправность	Возможная причина	Методы устранения
1	Не горит	Отсутствует электропитание	Проверьте внешний
	индикатор		источник питания
	клавиши	Вышел из строя индикатор	Замените индикатор
	электропитания		
		Вышел из строя	Замените
		предохранитель	предохранитель
2	Корпус бьет	Ненадежное заземление	Проверьте заземление
	ТОКОМ		
3	Электронагре-	Вышел из строя реостат	Замените реостат
	ватель не		
	красного цвета		
4	Нет нагрева	Вышел из строя	Замените
	пробы в тигле	электронагреватель	электронагреватель
5	Проба топлива	Слишком маленькая	Увеличить глубину
	воспламеняется	величина погружения	погружения
	позднее, чем	воспламенителя в тигель	воспламенителя винтами
	нужно		крепежа при
			выключенном питании.
6	Проба	Слишком большая величина	Уменьшить величину
	воспламеняется	погружения воспламенителя	погружения винтами
	раньше, чем	в тигель	крепежа при
	нужно		выключенном питании.
7	Электрический	Вышел из строя кабель	Замените кабель питания
	воспламенитель	питания воспламенителя	
	не дает дуговой		
	искры	Вышел из строя электро	Замените электрический
		воспламенитель	воспламенитель

Программа и методика аттестации на аппарат для определения температуры вспышки в открытом тигле ТВО-2-ПХП

1. ОБЪЕКТ АТТЕСТАЦИИ. ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1. Настоящий документ устанавливает порядок, содержание и методику проведения первичной периодической аттестации (далее аттестации) аппарата определения ДЛЯ температуры вспышки нефтепродуктов в открытом тигле ТВО-2-ПХП (в дальнейшем – аппарат) в требованиями ГОСТ Р 8.568-2017 «ГСИ. Аттестация испытательного оборудования. Основные положения».
- 1.2. Аппарат для определения температуры вспышки нефтепродуктов в открытом тигле ТВО-2-ПХП предназначен для определения температуры нефтепродуктов (автомобильных бензинов, вспышки светлых темных И авиационных бензинов. авиационных топлив ДЛЯ турбореактивных двигателей, растворителей с установленной точкой кипения, нафты, уайтспирита, керосина, газолей, дистиллятных жидких топлив и аналогичных нефтепродуктов, а также нефти и темных нефтепродуктов, нагреваемых с установленной скоростью в открытом тигле, в момент вспышки паров нефтепродуктов над его поверхностью от зажигательного устройства по методике ГОСТ 4333-2021, ГОСТ33141-2014 и ASTM D92(ISO 2592:2000).

Сущность метода заключается в заполнении испытательного тигеля пробой до заданного уровня. Далее, вначале пробу нагревают быстро, а затем продолжают медленный нагрев с постоянной скоростью по мере приближения к температуре вспышки. Через заданные температурные интервалы подводят источник зажигания к испытательному тиглю.

За температуру вспышки принимают наименьшую температуру, при которой при поднесении источника зажигания происходит воспламенение паров над поверхностью жидкости.

Для определения температуры воспламенения продолжают испытание, пока применение источника зажигания не вызовет воспламенение паров над образцом и горение в течение не менее 5 с.

Температуру вспышки и температуру воспламенения, определенные при барометрическом давлении окружающей среды, корректируют на стандартное атмосферное давление, используя уравнения.

1.3. Для проведения аттестации используют аппарат ТВО-2-ПХП в комплектности, указанной в паспорте аппарата.

- 1.4. Лица, допущенные к проведению аттестации аппарата, должны изучить техническое описание и руководство по эксплуатации аппаратов ТВО-2-ПХП, согласно паспорта изделия, стандарты по методике испытаний ГОСТ 4333-2021, ГОСТ33141-2014 и ASTM D92 (ISO 2592:2000), а также технику безопасности.
- 1.5. При проведении аттестации должны соблюдаться требования безопасности:
- ГОСТ 12.2.003 «Система стандартов безопасности труда. Оборудование производственное. Общие требования безопасности»;
- По способу защиты человека от поражения электрическим током аппарат должен соответствовать классу 1 по ГОСТ 12.2.007.0;
- «Правила техники безопасности при эксплуатации электроустановок потребителей».
- ГОСТ 12.1.044-2018 «Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения»
- МИ 2418-97 «ГСИ. Рекомендации. Классификация и применение технических средств испытаний нефти и нефтепродуктов»

2. ЦЕЛИ И ЗАДАЧИ АТТЕСТАЦИИ. ОБЩИЕ ПОЛОЖЕНИЯ. ПЕРЕЧЕНЬ ДОКУМЕНТОВ

- 2.1. Цель аттестации: подтверждение возможности воспроизведения условий испытаний и установление пригодности аппарата для определения температуры вспышки нефтепродуктов в открытом тигле при атмосферном давлении в соответствии с методом, изложенным в ГОСТ 33141-2014, ГОСТ 4333-2021, а также ASTM D92 (ISO 2592:2000).
- 2.2. Перечень документов на основании которых проводят аттестацию аппарата:
- -ГОСТ Р 8.568-2017 «ГСИ. Аттестация испытательного оборудования. Основные положения»;
- -ГОСТ Р ИСО 5725-6-2002 «Точность (правильность и прецизионность) методов и результатов измерений. Ч.6 Использование значений точности на практике»;
- -ГОСТ Р 8.580-2001 «ГСИ. Определение и применение показателей точности методов испытаний нефтепродуктов»;
- ГОСТ 4333-2021 «Нефтепродукты. Методы определения температуры вспышки нефтепродуктов в открытом тигле по методу Кливленда»
- ГОСТ 33141-2014 Дороги автомобильные общего пользования. Битумы нефтяные дорожные вязкие. Метод определения температур вспышки. Метод с применением открытого тигля Кливленда;

- ASTM D92 «Стандартный метод определения температуры вспышки и воспламенения в открытом тигле по Кливленду»;
- ГОСТ 400-80 «Термометры стеклянные для испытаний нефтепродуктов»;
- -Паспорт на аппарат ТВО-2-ПХП;
- -Программа и методика аттестации аппарата ТВО-2-ПХП.
- 2.3. Местом проведения аттестации является рабочее место установки аппарата (лаборатория, где в дальнейшем будут проводиться испытания), оснащенная всем необходимым оборудованием для адекватного проведения аттестации и дальнейшей работы аппарата или лаборатория местного метрологического органа.
- 2.4. Продолжительность проведения аттестации определяется согласно методике испытаний ГОСТ 33141-2014, ГОСТ 4333-2021, ASTM D92 (ISO 2592:2000), а также в соответствии с испытуемым продуктом.

3. ОБЪЕМ АТТЕСТАЦИИ. УСЛОВИЯ И ПОРЯДОК ПРОВЕДЕНИЯ. ОБРАБОТКА, АНАЛИЗ И ОЦЕНКА РЕЗУЛЬТАТОВ АТТЕСТАЦИИ

- 3.1. Периодичность аттестации не реже одного раз в год.
- 3.2. Условия проведения аттестации:

Аттестацию необходимо проводить при условиях, указанных в разделе II паспорта аппарата «Назначение и условия эксплуатации».

- 3.3. При проведении аттестации выполняют следующие операции:
- Экспертиза технической документации (п. 3.4)
- Внешний осмотр (п.3.5)
- Экспериментальное исследование аппарата (п. 3.6.):
 - 1) Проверка электрического сопротивления изоляции
 - 2) Проверка повторяемости и отклонения результатов определения температуры вспышки по ГСО на аппарате, согласно паспорту ГСО.
- Оформление результатов аттестации (п.5.1.)
- 3.4. Экспертиза технической документации рассмотрена в таблице 1:

Таблица 1

Содержание работ по рассмотрению технической документации	Указания по методике рассмотрения
---	-----------------------------------

Оценка эксплуатационной документации с точки зрения удобства ее использования потребителем	Проверяется возможность ознакомления с аппаратом, его эксплуатацией и техническим обслуживанием
Предварительная оценка возможности проведения исследований технических характеристик	Определяются полнота и правильность выбора технических характеристик, а также методов и средств их проверки
Проверка срока действия паспортов на стандартные образцы температуры вспышки нефтепродуктов в открытом тигле	Устанавливается, что срок действия паспортов не истек
Проверка наличия свидетельств о поверке термометров	Устанавливается, что срок действия свидетельств о поверке термометров не истек

3.5. Внешний осмотр:

Аппарат к аттестации не допускается, если при внешнем осмотре не выполняется хотя бы один из пунктов:

- комплектность эксплуатационной документации и аппарата соответствуют разделу X «Комплектация и техническая документация» паспорта аппарата;
- требования безопасности и условий аттестации соблюдены;
- Монтаж аппарата соответствует требованиям технической документации, проекта и отраслевым стандартам безопасности;
- Конструкция и размеры всех элементов аппарата соответствуют требованиям ГОСТ 33141-2014, ГОСТ 4333-2021, ASTM D92 (ISO 2592:2000);
- работоспособность органов управления не нарушена;
- функционирует индикация;
- отсутствуют явные механические повреждения и дефекты, влияющие на работу аппарата.

3.6. Экспериментальное исследование аппарата:

3.6.1. Проверка электрического сопротивления изоляции:

Проверку электрического сопротивления изоляции измерительного блока производят в следующей последовательности:

- 1) Отключают сетевой шнур от сети питания;
- 2) Подключают мегаомметр, рекомендованный в п. 4.1. настоящей методики аттестации, между закороченными клеммами питания и металлическими элементами корпуса установки;
- 3) производят измерение сопротивления изоляции при значении испытательного напряжения 500 В.

Результат испытания считают положительным, если измеренное значение сопротивления изоляции не менее 20 МОм.

3.6.2. Проверка повторяемости и отклонения результатов определения температуры вспышки по ГСО на аппарате, согласно паспорту ГСО:

Проверку повторяемости и отклонения результатов определения температуры вспышки по ГСО на аппарате путем определения температуры вспышки нефтепродуктов в открытом тигле для проб стандартных образцов ГСО нефтепродуктов. Аттестация проводится по тому ГСО, в области которого работает пользователь.

3.6.2.1. Эксперимент с ГСО проводят в соответствии с требованиями ГОСТ 33141-2014, ГОСТ 4333-2021, ASTM D92 (ISO 2592:2000), паспортом (руководством по эксплуатации аппарата) и порядком применения ГСО.

Порядок применения ГСО изложен в инструкции по применению ГСО. 3.6.2.2. Корректировку показаний температуры вспышки в открытом тигле относительно реального измеренного атмосферного давления проводят согласно формуле, указанной в ГОСТ 33141-2014, ГОСТ 4333-2021, ASTM D92 (ISO 2592:2000).

Если барометрическое давление во время испытания ниже 95,3 кПа (715 мм рт.ст.), то необходимо к полученным значениям температуры вспышки ввести соответствующие поправки по табл. 1 ГОСТ 4333-2021 (ISO 2592:2000).

- 3.6.2.3. За результат испытания принимают среднее арифметическое значение результатов двух определений, округленное до целого числа и выраженное в градусах Цельсия.
- 3.6.2.4. Два результата испытаний, полученные одним исполнителем признаются достоверными (с 95%-ной доверительной вероятностью), если расхождение между ними не превышает значений, указанных в табл.2 ГОСТ 4333-2021 (ISO 2592:2000).
- 3.6.2.5. Если отклонение температуры от показаний температуры вспышки, указанное в паспорте испытуемого ГСО не умещается в рамки допуска по п. 3.6.2.2. требуется повторная аттестация после корректировки параметров аппарата посредством калибровки контроллера и/или калибровки контроллера мощности и/или ремонта аппарата.

3.6.3. Результаты аттестации:

Аппарат пригоден к испытаниям нефтепродуктов и выдержаны условия испытания, если разность результатов определения температуры вспышки ГСО с аттестованной характеристикой не превышает значения абсолютной погрешности для данного аттестованного ГСО с учетом метрологических возможностей самого метода.

4. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ И МЕТРОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ АТТЕСТАЦИИ

- 4.1. Аппарат ТВО-2-ПХП в стандартной базовой комплектации;
- 4.2. Мегаомметр $\frac{9C0202}{2}$ Γ (0-10 000 MOм /±15%) или аналогичный;
- 4.3. Стандартные образцы температуры вспышки нефти и нефтепродуктов в открытом тигле согласно таблице 2:

Таблица 2

	ГСО (МСО)		⁰ С аттестованное значение
ГОСТ 4333-2021	4407-89	TOT-1	73,5
(ISO 2592:2000)	8613-2004	TOT-6	88
ГОСТ 33141-2014	10829-2016	TOT-2	100,7
ASTM D 92-16	10830-2016	TOT-3	128,0
	10831-2016	TOT-4	226,9
	8804-2006	TOT-7	240
	10832-2016	TOT-5	271,9

Примечание: Аттестация проводится по тому ГСО, в области которого работает пользователь.

- 4.4. Термометр стеклянный ртутный типа ТН-2М по ГОСТ 400-80
- 4.5. Секундомер любого типа;
- 4.6. Барометр ртутный или барометр-анероид типа БАММ или аналогичный с погрешностью измерения не более ± 0.2 (1,5) кПа (мм.рт.ст.);
- 4.7. Измеритель влажности и температуры ИВТМ-7 (0...99)% ПГ $\pm 2\%$ (- 20...60)°С ПГ $\pm 0,2$ °С или аналогичный;
- 4.8. Трехсекционный экран из листовой стали, окрашенный с внутренней стороны черной краской, каждая секция которого имеет ширину около 46 см и высоту 61 см по ГОСТ 4333;
- 4.9. Щетка металлическая.

Примечание:

Допускается использование конкретного ГСО только из области использования Потребителя.

Допускается применение иных (отечественных и импортных) средств аттестации (оборудования, посуды, аппаратуры и реактивов), не уступающих по метрологическим характеристикам (классу точности и квалификации) вышеуказанным.

5. ТРЕБОВАНИЯ К ОТЧЕТНОСТИ

- 5.1. Результаты испытаний фиксируются в виде протокола в соответствии с ГОСТ 8.568 -2017 Приложение А.
- 5.2. При положительных результатах испытаний на аппарат оформляется аттестат по форме ГОСТ 8.568 -2017 Приложение Б.

ЗАКАЗАТЬ